A Reinforcement Learning Adaptive Fuzzy Controller for Differential Games
نویسندگان
چکیده
In this paper we develop a reinforcement fuzzy learning scheme for robots playing a differential game. Differential games are games played in continuous time, with continuous states and actions. Fuzzy controllers are used to approximate the calculation of future reinforcements of the game due to actions taken at a specific time. If an immediate reinforcement reward function is defined, we may use a fuzzy system to tell what is the predicted reinforcement in a specified time ahead. This reinforcement is then used to adapt a fuzzy controller that stores the experience accumulated by the player. Simulations of a modified two car game are provided in order to show the potentiality of the technique. Experiments are performed in order to validate the method. Finally, it should be noted that although the game used as an example involves only two players, the technique may also be used in a multi-game environment.
منابع مشابه
Mini/Micro-Grid Adaptive Voltage and Frequency Stability Enhancement Using Q-learning Mechanism
This paper develops an adaptive control method for controlling frequency and voltage of an islanded mini/micro grid (M/µG) using reinforcement learning method. Reinforcement learning (RL) is one of the branches of the machine learning, which is the main solution method of Markov decision process (MDPs). Among the several solution methods of RL, the Q-learning method is used for solving RL in th...
متن کاملReinforcement Learning Based PID Control of Wind Energy Conversion Systems
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملRepetitive Tracking Control of Nonlinear Systems Using Reinforcement Fuzzy-Neural Adaptive Iterative Learning Controller
This paper proposes a new fuzzy neural network based reinforcement adaptive iterative learning controller for a class of nonlinear systems. Different from some existing reinforcement learning schemes, the reinforcement adaptive iterative learning controller has the advantages of rigorous proofs without using an approximation of the plant Jacobian. The critic is appended into the reinforcement a...
متن کاملReinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic
In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...
متن کاملAn Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic
This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 59 شماره
صفحات -
تاریخ انتشار 2010